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Introduction 

Several factors determine the overall power handling capability of any system that employs 
switching devices.  These include: the device current ratings, the device gain, as well as the 
switching and conduction losses.  The current handling for each switch in the system can be 
leveraged by placing devices in parallel.  This is essential for power electronics applications.  
Silicon carbide (SiC) devices are particularly well-suited to such applications, due to their unique 
combination of characteristics.  These include fast recovery and good voltage blocking, along 
with excellent high temperature performance.  This should allow SiC bipolar junction (BJT) 
devices to operate effectively in parallel at package temperatures up to 150 °C.  These device 
properties result from the wide bandgap (3 eV), high dielectric breakdown (3.5 MV/cm), and 
high thermal conductivity (5 W/cm-K) of SiC (1).  However, the effectiveness of a parallel 
configuration can be compromised by unequal current sharing between devices.  To evaluate the 
potential of SiC devices to meet the requirements of a high temperature power converter, SiC 
bipolar junction transistors (BJT) fabricated by CREE were packaged in parallel pair modules at 
ARL.  Both 2 by 2 mm and 3 by 3 mm BJT devices were fabricated and evaluated.  The data 
presented here focuses on recently delivered 3 mm by 3 mm devices, as well as older 2 mm 
device modules.  The 2 mm devices have gains of about 10, while the newer 3 mm devices have 
gains above 20 and block voltages to about 1.2 kV.  A Tektronix 370 curve tracer was used to 
measure the current gain of each BJT, for use in matching the devices as well as post-packaging 
measurements to determine temperature dependence.  The results detailed here are being used to 
apply SiC BJT devices to development of an all SiC 3-phase inverter, which provides versatile 
power conditioning.  This inverter has been demonstrated at power levels up to 10 kW. 

The goal of this effort is to study the SiC devices under conditions that simulate switching of an 
actual motor.  It is also crucial that these conditions include module temperatures up to at least 
90 oC, since this is required for the mobile power conditioning applications underlying this 
effort.  Various methods of monitoring temperature have been employed, including RTDs and 
thermal imaging.  The RTD only gives temperature values where it is mounted, which can be 
40 oC or more below the device temperature.  Thermal imaging provides more accurate 
temperature measurement.  However, the thermal camera is highly sensitive to changing 
emissivities of the subject materials.  Methods of accounting for disparate emissivities during 
thermal imaging are being developed.  Detailed thermal data is not presented here, but will be 
included in upcoming publications of results from the continued SiC device evaluation effort.  
Previous measurements of similar SiC BJT devices have demonstrated their excellent high power 
switching performance (2).  The switching results presented here provide further evidence of the 
superior high current and high temperature capabilities of these devices to comparable silicon 
devices. 
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Procedure 

Parallel BJT modules were switched inductively, at voltages up to 750 V and device currents up 
to 10 A.  The addition of more parallel devices with higher gains will increase the current 
switching capability.  In order to achieve the 10 kW power handling required, each inverter 
phase leg must ultimately switch 30 A (RMS).  Modules corresponding to each phase leg contain 
multiple BJTs configured with parallel base inputs.  These are matched prior to packaging so that 
base current sharing is maximized.  The collectors of these devices are fed in common by the 
high power source.  Measurement results (shown in figures 3 and 4) indicate excellent on-state 
current sharing between the devices.  The emitter currents of the parallel devices were within 
10% of one another for all the BJT modules tested.  The most impressive results during parallel 
switching indicate that the individual device currents are within 3% of each other.  The device 
current and voltage data was measured at package temperatures from 25 C to 150 C.  Switching 
was performed up to 1 kHz and 10% duty cycle, with maximum power handling up to 4 kW per 
device.  Figure 1 shown above, is a photograph of a parallel BJT module containing a matched 
pair of devices.  
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Figure 1. Test module contains a pair of silicon carbide BJT devices, mounted on a common 
collector pad.  Parallel emitter leads extend to the left and base leads to the right.  A 
doughnut shaped RTD to enable temperature monitoring is located above the devices. 

Figure 2 is the basic inductive BJT switching circuit schematic for this experiment.  The BJT 
indicated in this circuit actually represents the parallel pair referred to in this document.  The 
inductance used here is nominally 4 mH, while the load was varied to produce the desired 
collector current values.  Base current was adjusted in order to accommodate the high 
temperature device gains, while limiting the maximum base input to a safe level of 1.0 A per 
device.  The on-state BJT current densities were conservatively limited to the presumed safe 
maximum value of 110 A/cm2.  This means, for example, that each 2 mm device can safely 
handle an on-state current of 4.5 A at temperatures up to 150 C, while the base currents of these 
devices are 1.0 A.  Gain measurements of the 2 mm devices at 150 °C indicated gains of 
approximately 4 or 5.  Therefore, the gain of these devices at high temperature is sufficient to 
accommodate the maximum base and collector currents.  The 3 mm devices are able to handle 
10 A of collector-emitter current.  The high temperature gain of these devices is well above 10, 
so that the maximum base current is sufficient to drive them at the maximum collector-emitter 
current and temperature. 
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Figure 2.  Inductive switching test setup.  

Results 

Figure 3 is an expanded view of the individual device currents for a parallel pair of 2 mm BJT 
devices in the inductive switching test setup.  The high degree of sharing achieved by the BJT 
pair is clearly illustrated in this figure.  Total emitter current was found to be 6.32 Amps.  The 
on-state current of device 1 is 3.06 Amps, while the on-state current through device 2 is 3.26 
Amps.  This translates into 48.5% and 51.5% of the total emitter current, respectively.  Other 
device pairs gave similar results, with current sharing within 8% for each of the four device pairs 
tested.  Figure 4 shows the repetitive switching of the BJT device pair at 10% duty cycle.  The 
base input pulses are 100 microseconds each, delivered at a frequency of 1 kHz.  Figure 5 
represent the switching losses experienced by the devices at turn-off.  The devices had losses in 
the 700 to 850 W range during turn-off (losses during turn-on were small compared to those 
during turn-off.).  The calculated energy loss during turn-off is below 1mJ for each device. 
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Figure 3.  Current Sharing Between a Parallel Pair of 2 mm SiC BJTs at 150 °C. 

 

 

Figure 4. Oscilloscope trace showing load current and voltage (top) along with the individual 
emitter currents measured for a 2 mm parallel BJT pair during inductive switching. 
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Switching Loss of Parallel Devices 
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Figure 5.  Switching loss during turn-off of parallel BJT pair. 
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Figures 6 and 7 show the transient response during inductive switching of a three device parallel 
module containing 3 mm SiC BJTs at 100 oC.  The oscilloscope traces in these figures show the 
base currents, along with the total collector current and voltage at turn-on and turn-off, 
respectively.  These data were taken while each device had a collector-emitter potential of 
400 V, with 30 A total current through the module.   

 

Figure 6.  400 V 100 °C turn-on. 

 

 

Figure 7.  400 V 100 °C turn-off. 
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The energies associated with turn-on and turn-off as a function of temperature, for both 300 V 
and 400 V, are shown in figures 8 and 9.  The turn-on energies ranged from 1 to 4 mJ, while the 
turn-off energies were 1 to 6 mJ.  The temperature dependence of these results is relatively flat, 
confirming the excellent high temperature performance of these BJTs in particular, as well as the 
expected performance of an all SiC inverter operating at a heat sink temperature of 90 oC. 

 

 

 

 

 

 

Figure 8. Energy loss during turnoff for 3 mm BJT module at 300 V and 400 V 
collector voltages.  
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Figure 9. Energy loss during turn-on for 3 mm BJT module at 300 V and 400 V 
collector voltages. 
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Conclusions 

Based on the results of these experiments, it appears that the CREE SiC BJT devices examined 
here effectively share current during inductive switching, and maintain this sharing at high 
temperature (up to a device package temperature of 150 oC).  Low energy losses and power 
dissipations during inductive switching were indicated by the measured transient data.  These 
results bode well for the application of these devices to the high current parallel inverter circuits 
necessary for power conditioning systems.  The high temperature performance of these devices 
should allow for the flexible, portable system applications envisioned in the Future Combat 
Systems (FCS) program.  Efforts to optimize device efficiency and high temperature 
performance are continuing.  Experimental results will be forthcoming for the next generation of 
the SiC BJT devices in FY06.  We are also focusing on understanding the operation and failure 
mechanisms of these devices.  This information is used to maximize circuit performance and 
provided as feedback to CREE so that they can continue to improve the fabrication process for 
subsequent generations of devices. 
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